WebSep 14, 2024 · Cross-batch Negatives 具体来说,并行训练时首先计算每个 GPU 内的段落embedding,然后共享这些embedding到所有 GPU 中。 即通过从其他 GPU 收集段落来作为每个问题的附加负样本以增加负样本的规模。 单 GPU 和多 GPU 都可以应用Cross-batch Negatives。 只有一个 GPU 可用时,可以通过累加的方式实现,同时权衡训练时间。 … WebDec 13, 2024 · 同时在训练时采用In-batch negative策略,相比REALM提升了2个多点。同时又证实了Pipeline方法的高效性。 优化了半天Retriever,那Reader层面还有什么优化呢?能不能用生成模型? 2024年的RAG [10] 就用DPR Retriever+BART模型来了一版生成式开放域QA:
Pytorch Loss Function for in batch negative sampling and …
WebAug 25, 2024 · HardestNeg 策略核心是在 1 个 Batch 内的所有负样本中先挖掘出最难区分的负样本,基于最难负样本进行梯度更新。 例如: 上例中 Source Text: 我手机丢了,我想换个手机 有 3 个负例 (1.求秋色之空全集漫画,2.手机学日语的软件,3.侠盗飞车罪恶都市怎么改车),其中最难区分的负例是 手机学日语的软件,模型训练过程中不断挖掘出类似这样的最 … Web为了解决这个问题,在构建负样本的时候用到了ITC任务,在一个batch里,通过计算特征相似度,寻找一张图片除它本身对应的文本之外相似度最高的文本作为负样本。这样就能构建一批hard negatives,从而提升训练难度。 ... 更新策略见下图,是一个滑动平均的过程 ... sharky aerials
PaddleNLP 2.0 震撼来袭(二) - 知乎 - 知乎专栏
WebIn-batch negatives 策略核心是在 1 个 Batch 内同时基于 N 个负例进行梯度更新,将Batch 内除自身之外其它所有 Source Text 的相似文本 Target Text 作为负例,例如: 上例中 我手机 … WebJan 13, 2024 · 对上一步的模型进行有监督数据微调,训练数据示例如下,每行由一对语义相似的文本对组成,tab分割,负样本来源于引入In-batch Negatives采样策略。 关于In-batch Negatives 的细节,可以参考文章: 大规模搜索+预训练,百度是如何落地的? Web负样本(negative ... 这样做目的是提高A的recall,提高B的precision,保证每个batch中,各类别间生成的正样本数量趋于1:1 ... ,比如,发现模型输出大框背景的频次偏高,那么这个时候我们就要改变随机采样负样本的策略,就要针对性的增加小分辨率feature map上的负 ... population of earth in 1926